文献综述
本课题的现状及发展趋势:
数学形态学是一种非线性滤波方法,形态和差(膨胀与腐蚀)是数学形态学的基础。数学形态学可以用来解决抑制噪声、特征提取、边缘检测、图像分割、形状识别、纹理分析,图像恢复与重构、图像压缩等图像处理问题。
它是一种基于集合论的方法和理论,它的基本思想是利用一个结构元素去探测一个图像,通过目标图像的形态变换实现结构分析和特征提取的目的。利用称作结构元素的“探针”收集图像的信息。当探针在图像中不断地移动时,便可以考察图像各个部分间的相互关系,从而了解图像的结构特征。数学形态学基于探测的思想,与人的视觉特点有类似之处。作为探针的结构元素,可直接携带知识(形态、大小、甚至加入灰度和色度信息),来探测研究图像的结构特点。
数学形态学的主要内容是设计一整套变换,来描述图像的基本特征或基本结构。最常用的有7种基本变换,分别是膨胀、腐蚀、开、闭、击中、薄化、厚化。其中膨胀和腐蚀是两种最基本最重要的变换,其它变换由这两种变换的组合来定义。如:先腐蚀后膨胀的过程称为“开”运算,它具有消除细小物体,在纤细处分离物体和平滑较大物体边界的作用;先膨胀后腐蚀的过程称为“闭”运算,具有填充物体内细小空洞,连接邻近物体和平滑边界的作用。
形态学运算是物体形状集合与结构元素之间的相互作用,对边缘方向不敏感,并能在很大程度上抑制噪声和探测真正的边缘。同时数学形态学在图像处理方面还具有因直观上的简单性和数学上的严谨性,在描述图像中物体形状特征上具有独特的优势。将数学形态学用于边缘检测,既能有效地滤除噪声,又可保留图像中的原有细节信息,具有较好的边缘检测效果。该算法简单,适于并行处理,且易于硬件实现,适于对二值图像进行边缘提取。但数学形态学运算进行边缘检测也存在着一定的不足,比如结构元素单一的问题。它对与结构元素同方向的边缘敏感,而与其不同方向的边缘或噪声会被平滑掉,即边缘的方向可以由结构元素的形状确定。但如果采用对称的结构元素,又会减弱对图像边缘的方向敏感性。所以在边缘检测中,可以考虑用多方位的形态结构元素,运用不同的结构元素的逻辑组合检测出不同方向的边缘。
本课题的价值:
数学形态学是一种新型的图像处理方法和理论,已引起了人们的广泛关注。近年来,形态学图像处理已经发展成为图像处理的一个主要研究领域。
数学形态学是一种非线性滤波方法,在图像处理中已获得了广泛的应用。形态学运算是物体形状集合与结构元素之间的相互作用,对边缘方向不敏感,并能在很大程度上抑制噪声和探测真正的边缘。同时数学形态学在图像处理方面还具有因直观上的简单性和数学上的严谨性,在描述图像中物体形状特征上具有独特的优势。
(1)形态学边缘检测算法简单,并行快速,易于硬件实现。
以上是毕业论文文献综述,课题毕业论文、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。